
© 2021 JETIR April 2021, Volume 8, Issue 4                                                       www.jetir.org (ISSN-2349-5162) 

JETIR2104286 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 649 
 

Review on Software Clone Management  
Prof. Chavi Ralhan1, Sumit Kumar Kushwaha2, Gurpreet Singh3, Saurabh Kumawat4, Asif Ali5, Midde Sai 

Kumar Reddy6            

*1,2,3,4,5,6Department of Computer Science and Engineering, Lovely Professional University, Phagwara, Punjab, India 

 

  

Abstract— Copy and pasting of existing code or a fragment of 

code from one software to another instead of writing from 

scratch is known as software cloning or code cloning. Software 

developers find it time consuming and easy but with shortcuts 

their comes hurdles in long- run. Things becomes more 

complex when the development reaches advance stages and as 

a result it gets difficult to maintain the software. Maintenance 

which is among the most expensive part in software 

development, studies have been done in the past and recent 

which speaks of the pros and cons of cloning, this paper will be 

summarizing different aspects of code cloning.  
   

         Keywords-Software cloning, code cloning, maintenance. 

 

I. INTRODUCTION   

 

Cloning is a common practice in both the software and 

research industries. Known code is commonly reused from 

publicly accessible tools, which encourages code cloning. It 

creates a difficult software maintenance issue. It takes a 

significant amount of time and effort, which raises the cost 

of developing any tool, software, or other product. Code 

cloning refers to duplicate or nearly duplicate code 

segments. The concept of code clones is used for a variety of 

reasons, including reusing code through 'code-and-paste' and 

others that make it difficult to modify source files 

consistently. If a bug is discovered in a single code block, 

the entire cloned block must be modified, making 

maintenance more difficult as the system grows larger. 

Fowler defined clone as a duplicate code which is an 

example of bad smell [11]. 

 

The primary cause of software maintenance difficulties is 

code clones, which does not imply that code clones are only 

harmful to software development. For software 

development, code clones can be both beneficial and 

disastrous. As a result, before refactoring or removing 

clones, they should be investigated. Clones are classified 

into two types: syntactic clones and semantic clones. Type-

1, Type-2, and Type-3 clones are included in syntactic clone 

[12] whereas Type-4 clones are included in semantic clone. 

Type-1 clones are code fragments that are identical except 

for differences in white spaces, comments, layout, and so on. 

Type-2 clones are code segments that are similar to each 

other but have minor differences in their names, such as 

renaming of identifiers, variables, and so on. As a result, 

Type-2 clones are also referred to as renamed clones. Type-3 

clones are near-miss clones that have similar code fragments 

but with some additional statement addition and deletion. 

Semantic clones (or Type-4 clones) are clones that perform a 

similar task but have different syntactic structures. 

  

II. LITERATURE REVIEW 

 

 

There have been various proposed and review papers 

advocated by various researchers who worked in this area of 

cloning and implemented their proposed methodologies using 

various techniques and tools in the literature survey. 

 Beginning in 2006, Rachel Edita Roxas [13] proposed 

a technique that automatically detects cloning in 

programmes with the help of a tool called Jplag. 

 Stefan Bellon [14] published a comparison and 

evaluation of clone detection tools in 2007, stating 

that token and text-based techniques work similarly, 

and Merlo and Baxter's AST tool has higher precision 

but higher costs. They also claimed that Krinke's 

PDG-based tool does not detect type 3 clones, also 

known as Near Miss clones, efficiently. 

 In the year 2008, Cory J. Kapser [15] emphasised 

negative clone characteristics known as code smells. 

They claimed that these code odours have a negative 

impact on programme design and maintenance. A 

well-known review paper published in 2009 by James 

R. Cordy and Chanchal K. Roy [16] was solely 

focused on clone detection techniques and tools. They 

also provided reviews on clone detection 

methodology or processes involved in clone 

detection. 

Tung Thanh Nguyens [17] presented another 

technique in the same year, based on scalable and 

incremental clone detection using the Clemanx tool, 

which represents code fragments as sub trees of ASTs 

and detects similar clones using a distance-based 

clustering problem. 

 Many techniques were presented by various 

researchers in 2010. Perumal. A [18] proposed one 

technique out of those listed. This technique made use 

of metrics to extract similarity in previously detected 

software clones. Following clone detection, two 

functions were applied to the detected clones: first, it 

could create clusters in which the detected clones 

were grouped together, and then cluster ranking was 

used on them by arranging them in ascending order. 

Another review paper emphasised the comparison of 

various plagiarism detection tools such as Jplag. 

 Finally, it was determined that these tools did not 

reveal the presence or absence of plagiarism, but 

rather defined the degree of similarity among the 

code.Moss, Marble, Gplag, Sim, and others on the 

basis of performance and sensitivity. 

 G.Anil Kumar proposed a technique in 2011 that used 

a light weight clone detection technique, which is also 

known as a hybrid technique because it combines two 

techniques, metrics and text-based, with refactoring 

support. 

 Saif Ur Rehman and Kamran Khan [19] proposed a 

technique to detect clones using the LSC-Miner tool 

in 2012. LSC-Miner detects clones in multiple 

languages using a token-based technique. It is a 

useful tool that can also be used on large software 

systems. Another technique that came into play the 

same year was semantic clone detection, which was 

http://www.jetir.org/


© 2021 JETIR April 2021, Volume 8, Issue 4                                                       www.jetir.org (ISSN-2349-5162) 

JETIR2104286 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 650 
 

based on the JSC Tracker [20] tool and only worked 

on java code. It also made use of the open source 

database software DSpace and the reference 

management software JabRef. In the same year, 

Deepak Sethi [21] improved clone detection. He 

applied a data mining technique to data sets. This 

proposed method makes use of the Solid SDD tool, 

which provides a better visualisation of clone 

detection and has been enhanced with the addition of 

a graphical user interface.  

In the same year, Tahira Khatoon [22] proposed a 

technique for detecting clones in Java using AST. A 

hash function was used in this technique to partition 

ASTs into smaller sub trees. Subtrees were also 

compared to see how similar they were, and subtrees 

with values greater than the threshold value were 

considered clones. Another technique presented by 

Priyanka Batta [23] was dubbed the Hybrid technique 

because it combined metric and text-based techniques 

and could detect clones in C or C++. This application 

runs on the Windows platform. This work can be 

improved further by creating a tool that detects clones 

in multiple languages. In the same year, Rupinder 

Kaur and Prabhjot Kaur [24] attempted to improve 

performance and efficiency by comparing two token-

based techniques known as CC-Finder and PMD, 

which were compared using three types of metrics, 

namely file metrics, line metrics, and clone set 

metrics. They concluded that there is no such tool that 

detects all clones efficiently; rather, each tool has its 

own set of strengths and weaknesses that determine 

its usefulness in detecting clones. 

 Dhavleesh Rattan [25] published a review paper in 

2013 that was solely about the cloning background. It 

was about the various clone detection techniques and 

methodology that must be used when locating clones, 

as well as the benefits and drawbacks of doing so. 

Furthermore, it was about clone detection in other key 

areas such as clone analysis, cloning management, 

and so on. Kanika Raheja [26] proposed the other 

technique the same year. The technique used here was 

a metric-based technique that only worked with the 

Java programming language. The source code was not 

applied directly to java source code (.java). 

 Another technique proposed by Harpreet Kaur and 

Rupinder Kaur [27] in 2014 was metric-based. This 

method detects cloning not only in programming 

languages but also in web applications. This also 

returned higher level clones, referred to as directory 

clones in Java. In one of the other clone detection 

methods, neural networks and SIMCAD were used to 

detect clones. This technique was one of the hybrid 

techniques because it combined two techniques, text-

based and data-mining-based. 

 Manpreet Kaur and Madan Lal [28] presented one of 

the most recent proposals in 2015, which was a 

hybrid technique combining metric-based and text-

based techniques. Their proposal focuses on detecting 

type-1, type-2, and type-3 clones. They also improved 

their technique with the clone removal strategy. In the 

future, they can improve their tool to make it more 

efficient and capable of locating type-4 clones. 

Shashank Prabhakar [29] proposed a clone detection 

technique in 2016 that focuses on Type-1 and Type-2 

clones. 

 Li et al. [30] used deep learning to create CCleaner, a 

token-based clone detection tool. CCleaner first 

extracts from the source code a set of features that can 

be used to easily identify clone pairs by generating 

tokens with a lexical parser. These tokens are divided 

into eight categories to generate eight distinct 

features, which serve as input to the deep neural 

network and produce output in the form of a clone 

and non-clone pair. This tool can detect syntactic 

clones with high precision and recall, but it cannot 

detect semantic clones with the same level of 

accuracy. 

 In 2018, Ghosh and Kuttal [31] proposed using 

source code comments to detect semantic clones. This 

method combines the concept of comments with LDA 

(Latent Dirichlet Allocation) to produce a good result 

with precision of 84% and recall of 94%. Almori and 

Stephan [32] presented an introductory method for 

detecting semantic clones using the slicing concept. 

To detect semantic clones, the authors used SrcSlice, 

a slicing tool that determines the slice profile of each 

variable. The clone pairs are identified based on the 

similarity of each variable's slice profile. 

 In 2019, Jiang et al. proposed the tool EqMiner [33], 

which is based on input-output behaviour. If two code 

fragments have the same input-output behaviour, they 

are returned as a clone pair. Because this tool is 

scalable, it is also suitable for large projects. 

However, it only works with the C programming 

language. 

 In 2020, Using a probabilistic software model (PSM), 

Thaller et al. [34] proposed a semantic clone 

detection technique. In comparison to other tools such 

as Oreo, precision, and recall, the proposed approach 

yields superior results. The authors use PSM to 

determine equivalence behaviour, also known as 

similarity evaluation. This similarity assessment is 

then used in the software to detect semantic clones.  

 

III. CODE CLONE ANALYSIS  

  

a.) Definitions on Code Clone  

 

Investigates in over a significant time span tells that there is no 

exact definition for code clone, various explores give 

distinctive results.it relies upon boundaries, strategies that are 

being utilized for discovery gives various outcomes. 

In general, cloning is the result of different processes used to 

achieve an identical copy of something which is already 

existing. In software industry fragments of codes are copied to 

achieve target software. According to Ira Baxter ‘‘Clones are 

segments of code that are similar according to some definition 

of similarity” [2]. Duplication of code or code cloning is a 

software reuse form as defined by Roy and Cordy [5].  

Baker after experimenting on some sample programs 

presumed that dependent on exact and parametrized matches 

code contracts by 14% and 61% individually [1]. 

In extensive software programming frameworks 20-30% 

comprises of cloned code [1]. 

There are essentially two sorts of similitudes between two 

code sections. Two code fragments can be comparable 

http://www.jetir.org/


© 2021 JETIR April 2021, Volume 8, Issue 4                                                       www.jetir.org (ISSN-2349-5162) 

JETIR2104286 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 651 
 

dependent on the closeness of their program text or they can be 

comparable in  

their functionalities without being literarily comparable. The 

code fragments can have functional and textual similarity. 

 

Textual Similarity have following types of clones: 

 

 Type I: Indistinguishable code parts aside from 

varieties in whitespace (might be moreover varieties 

in format) and comments. 

 

 Type II: Fragments that are Structurally or 

syntactically indistinguishable with the exception of 

varieties in identifiers, literals, types, design and 

comments. 

 

 Type III: Duplicated parts with additional 

modifications. Proclamations can be changed, added 

or eliminated notwithstanding varieties in identifiers, 

literals, types, design and comments. 

 

Functional Similarity:  

 

 Type IV: These clones are the consequence of same 

semantic execution between at least two codes, yet 

that doesn't show that the specific piece is duplicated 

from a current issue arrangement, potential outcomes 

expresses that they may be carried out utilizing 

diverse syntactic variations. 
 

b.) Advantages and Applications of Detecting Code Clones  

  

Sometimes software development requires taking references 

from other existing similar or comparable software, in such 

cases reusing code fragments for achieving similar 

requirement is a productive way.  

Developers sometimes have restricted information hence, 

codes or solutions of pre-existing problems helps in significant 

way in accessing legitimate knowledge about the problem 

requirement like what data structure is required to be used, 

about instances variables, language, syntax etc. 

To distinguish pernicious programming clone location 

methods can assume an imperative part. By contrasting one 

noxious programming with another, it is feasible to discover 

the proof where parts of the one programming framework 

match portions of another [6]. 

Reusing pieces of codes additionally helps in decreasing the 

size of the program, in a large portion of the cases designers 

are assigned with cutoff times so this code clones helps the 

engineer from multiple points of view as it upgrades 

understandability. 

 

c.) Drawbacks of Code Duplication  

 

 Increase in maintenance effort is an unfavorable 

effect impact of cloning as we need to monitor all the 

replicated parts. In the event that any change is made 

in one reused area, it should be reflected altogether 

the reused areas to eliminate irregularities [4]. 

 On the off chance that a code portion contains a bug 

and that section is reused by adapting and pasting 

without or with minor variations, the bug of the first 

fragment may stay taking all things together the 

pasted fragments in the framework and along these 

lines, the likelihood of bug may rise significantly in 

the framework [7,8].  

 Cloning may result in poor architecture, a lack of 

inheritance structure, or abstraction, as a result, 

reusing parts of the implementation in future objects 

becomes difficult, it also has a detrimental effect on 

the maintainability of the system of the computer 

application [9]. 

 It is very common for the developer who created the 

original system to not be the one keeps it up to date. 

Furthermore, replicated codes not only makes the 

design more complicated, but it also makes it more 

difficult to understand, making changes and 

modification more difficult. Over time the program 

can become so complex that even small 

improvements would be difficult to implement [1,3]. 

 The size of the software system grows as a result of 

code cloning, placing a strain on system resources 

[3,10], in terms of compilation/execution time and 

space requirements, it degrades overall performance. 

 

IV. CODE DETECTION PROCESS 

A clone detector must look for code fragments with a high 

degree of similarity in the source text of a system. The main 

issue is that it is unknown which code fragments can be found 

multiple times. As a result, the detector must essentially 

compare every possible fragment with every other possible 

fragment. Because such a comparison is computationally 

expensive, several steps are taken prior to performing the 

actual comparison to reduce the domain of comparison. 

Furthermore, after identifying potential cloned fragments, 

additional analysis and/or tool support are required to detect 

actual clones. This section attempts to provide an overview of 

the clone detection process. 

 

 

                            

http://www.jetir.org/


© 2021 JETIR April 2021, Volume 8, Issue 4                                                       www.jetir.org (ISSN-2349-5162) 

JETIR2104286 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 652 
 

 

  

                                    Figure 1. Process of detecting clones 

 

1. Preprocessing: At the start of any clone detection 

method, the targeted source code is partitioned and 

the domain of the comparison is determined. This 

phase's main goals are as follows: 

 Remove any uninteresting elements: This 

phase filters out all source code that is 

uninteresting to the comparison phase. 

Partitioning is used to separate different 

languages in embedded code (for example, SQL 

embedded in Java code or Assembler embedded 

in C code). Similarly, generated code (e.g., LEX- 

and YACC-generated code). Before proceeding 

to the next phase, parts of the source code that 

are likely to generate a large number of false 

positives (e.g., table initialization) can be 

removed. 

 Determine source unit: After the uninteresting 

code is removed, the remaining source code is 

partitioned into a set of disjoint fragments known 

as source units. These are the largest source 

fragments that have direct clone relationships 

with each other. Because such units do not 

maintain any order in the source code, matching 

units cannot be aggregated beyond the border of 

such source units. 

 Determine comparison units: Depending on the 

comparison function of a method, source units 

may need to be further partitioned into smaller 

units. For comparison, source units, for example, 

can be subdivided into lines or even tokens. The 

syntactic structure of the source unit can also be 

used to derive comparison units. An if-statement, 

for example, can be further divided into 

conditional expression, then, and else blocks. The 

comparison units are arranged within the context 

of their corresponding source units. The 

comparison function relies on this ordering. 

 

2. Transformation: The source code's comparison units 

are transformed to another intermediate internal 

representation for ease of comparison or extraction of 

comparable properties. This transformation can range 

from very simple, such as simply removing 

whitespace and comments, to extremely complex, 

such as generating PDG representation and/or 

extensive source code transformations. From such 

intermediate representations, metrics-based methods 

typically compute an attribute vector for each 

comparison unit.  

 

There are two ways to accomplish this 

transformation: extraction and normalization. 

I. Extraction: It is further subdivided into 

three subcategories: tokenization, parsing, 

control, and data flow analysis [35]. 

 Tokenization: In this method, source units 

are converted into tokens using lexical 

protocols or procedures, and these tokens 

are arranged in token sequences for 

comparison after blank spaces and 

comments are removed. 

 Parsing: In this case, the entire source code 

is parsed to generate an AST (Abstract 

Syntax Tree), and then the source units 

from the ASTs that are required are 

displayed in the form of sub trees. These 

sub trees must be compared in order to 

identify clones. 

 Producing PDG: PDG (Program 

Dependency Graph) generated tools create 

PDG graphs in which nodes represent 

statements and edges represent data and 

control dependency in this approach. 

Subgraphs of PDGs are compared to lay out 

a comparison. 

 

II. Normalization: This is an optional step for 

removing differences caused by comments, 

whitespaces, and so on. This can be 

accomplished in a variety of ways, 

PREPROCESSING 

TRANSFORMATION 

MATCH DETECTION 

FORMATING 

POST PROCESSING 

EXTRACTION & 

M.ANALYSIS 

VISUALIZATION & 

ANALYSIS 

AGGREGATION 

http://www.jetir.org/


© 2021 JETIR April 2021, Volume 8, Issue 4                                                       www.jetir.org (ISSN-2349-5162) 

JETIR2104286 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 653 
 

including normalizing identifiers, which 

involves replacing all identifiers in source 

code with a single identifier, pretty-

printing, and so on [35]. 

 

3. Match Detection: The transformed code is then fed 

into a suitable comparison algorithm, which compares 

transformed comparison units to find a match. The 

order of the comparison units is used to sum adjacent 

similar units to form larger units. All comparison units 

belonging to a source unit are aggregated for fixed 

granularity clones. Aggregation, on the other hand, is 

continued for free granularity clones as long as the 

aggregated sum exceeds a given threshold for the 

number of aggregated comparison units. This ensures 

that the aggregation process is carried out until the 

largest possible group of comparison units is 

discovered. 

 

The output includes a list of matches in the transformed 

code that represent clone relations as clone pairs, clone 

classes, and clone families. Hashing, suffix trees, and 

other comparison methods are examples. 

 

4. Formatting: The clone pair list obtained with 

respect to the transformed code is converted to a clone 

pair list with respect to the original code base during 

this phase. Normally, each location of the previous 

phase's clone pair is converted into a line number on the 

original source files. A nested-tuple can be used to 

represent a clone pair in general. 

 

5. Post-processing: During this stage, false positive 

clones are removed using manual analysis and/or a 

visualization tool. 

 Manual analysis: Following the extraction of the 

original source code, the raw code of the clones of 

the clone pairs is subjected to manual analysis. 

False positive clones are filtered out during this 

stage. 

 Visualization: A visualization tool can be used to 

visualize the clones using the obtained clone pair 

list. A visualization tool can help to accelerate the 

manual analysis process for removing false 

positives and other related analysis. 

 

6. Aggregation: This is the final stage of the clone 

detection procedure. It refers to proper data analysis 

and data reduction. Clone classes and clone families are 

formed by combining the detected clone pairs [4]. 

Clone pairs are aggregated to clusters, classes, cliques 

of clones, clone groups, and so on in order to reduce the 

amount of data or perform certain analyses. 

 

 

V. TECHNIQUES FOR DETECTING CLONES 

 

There are various techniques for code detection: 

 

 Tree based 

 Token based 

 (Abstract syntax tree) AST based 

 Program Dependency Graph based 

 Metric based 

 Hybrid based 

 
 

 
Table 1.Provides a detailed description of various techniques based 

on various parameters, as well as a comparison of them 

 

Parameters Techniques 

 Text 

Based 

 Token 

Based 

Abstra

ct 

Syntax 

Tree 

(AST) 

Based 

Program 

Dependen

cy Graph 

(PDG) 

Based 

Metric 

Based 

Hybri

d 

Portability 

(Ability to run 

on multiple 

platforms) 

High Medium Low Low Metrics 

depende

nt 

Depend

s on 

type of 

techniq

ue used 

Efficiency 

(Quality of 

results) 

High Low High High High High 

Integrality(Lev

el of difficulty 

involved in 

integrating the 

technique in 

current 

environment) 

Low High Low Medium Medium Mediu

m 

Transformation 

(Method of 

preprocessing 

Removes 

white 

space and 

comment

s 

Tokens 

are 

generate

d from 

source 

code 

AST is 

generate

d from 

source 

code 

PDG is 

generated 

from source 

code 

Metrics 

value 

are 

calculat

ed after 

AST is 

generate

d from 

source 

code 

Depend

s on the 

hybrid 

techniq

ue 

Comparison 

Based (Type of 

input taken by 

clone detection 

technique) 

Lines of 

code 

Token Nodes of 

tree 

Nodes of 

program 

dependency 

graph 

Metrics 

value 

Depend

s on the 

hybrid 

techniq

ue 

Computational 

Complexity(up

per bound on 

time taken for 

clone 

detection) 

Depends 

on 

algorithm 

Linear Quadrati

c 

Quadratic Linear Depend

s on the 

hybrid 

techniq

ue 

Refactoring 

Opportunities 

(Refactoring 

can be done 

easily or not) 

Good for 

exact 

matches 

Good Good for 

refactori

ng as it 

finds 

syntactic 

clones 

Good for 

refactoring 

Manual 

inspecti

on 

required 

Depend

s on the 

hybrid 

techniq

ue 

Representation 

(How source 

code will be 

represented) 

Normaliz

ed source 

code 

In the 

form of 

tokens 

In the 

form of 

abstract 

syntax 

tree 

In the form 

of program 

dependency 

graph 

Set of 

metrics 

values 

Depend

s on the 

hybrid 

techniq

ue 

Language 

Dependency 

(Language 

targeted by 

clone detection 

technique) 

Adaptabl

e 

It needs 

a laxer 

but no 

syntactic 

knowled

ge 

required 

It needs 

a laxer 

but no 

syntactic 

knowled

ge 

required 

Parser 

required 

Parser 

required 

Depend

s on the 

hybrid 

techniq

ue 

Type of Clone 

Detected 

Type 1,2 

and 3 

Type 1,2 

and 3 

Type 

1,2,3 and 

4 

Type 1,2,3 

and 4 

Type 

1,2,3 

and 4 

Depend

s on the 

hybrid 

techniq

ue 

http://www.jetir.org/


© 2021 JETIR April 2021, Volume 8, Issue 4                                                       www.jetir.org (ISSN-2349-5162) 

JETIR2104286 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 654 
 

Output Type Clone 

pairs and 

Clone 

Classes 

Clone 

pairs and 

Clone 

Classes 

Clone 

pairs, 

Clone 

Classes, 

AST 

nodes 

Clone pairs 

and Clone 

Classes 

Clone 

pairs, 

Clone 

Classes, 

metrics 

value 

Depend

s on the 

hybrid 

techniq

ue 

 

 

 

VI. CONCLUSION & FUTURE WORK  

  

In this paper, we led a writing survey on code clone 

examination to improve programming/software maintenance 

measures. In figure 1, process of detecting clones along with 

their elaborated definition has been discussed later we have 

discussed several code clone detection techniques along with 

their detailed description based on various parameters and their 

comparison which is proposed by researchers to enhance code 

clone maintenance process in Table 1. We likewise talked 

about benefits and disadvantages of code clone. The 

aftereffects of this examination may fill in as a guide to 

possible clients of clone location methods, to help them in 

choosing the correct tool or procedure for their inclination. 

Likewise, there isn't a lot research in the space of clone the 

executives and model clones. These territories can be 

investigated 

research in the space of clone the executives and model clones. 

These territories can be investigated like detection of semantic 

clones, reliability of code clones and how efficiency can be 

more proficient if maintenance efforts are reduced. 

 

 

REFERENCES  

 
[1] R. Koschke, Frontiers of software clone management, in: Proceedings of 

Frontiers of Software Maintenance (FoSM’08), Beijing, China, 2008, pp. 
119–128 

[2] B.S. Baker, On finding duplication and near-duplication in large 
software systems, in: WCRE’95: Proceedings of the 2nd Working 
Conference on Reverse Engineering, IEEE Computer Society, 1995, pp. 
86. 

[3] R. Koschke, survey of research on software clones, in: Duplication, 
redundancy, and similarty in software, Dagstuhl Seminar Proceddings, 
2007, p. 24. 

[4] S. Thummalapenta, L. Cerulo, L. Aversano, M.D. Penta, An empirical 
study on the maintenance of source code clone, Empirical Software 
Engineering 15 (1) (2010) 1–34.  

[5] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue, Gemini: Maintenance 
Support Environment Based on Code Clone Analysis, 8th International 
Symposium on Software Metrics, pages 67-76, June 4-7, 2002.  

[6] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder: A multi-linguistic 
tokenbased code clone detection system for large scale source code IEEE 
Transactions on Software Engineering, 28(7):654-670, 2002.  

[7] Ekwa Duala-Ekoko, Martin Robillard. Tracking Code Clones in 
Evolving Software. In Proceedings of the International Conference on 
Software Engineering (ICSE'07), pp.158-167, Minneapolis, Minnesota, 
USA, May 2007  

[8] E. Merlo, M. Dagenais, P. Bachand, J.S. Sormani, S. Gradara, and G. 
Antoniol. Investigating large software system evolution: the linux kernel. 
In Proceedings of the 26th International Computer Software and 
Applications Conference (COMPSAC'02), pp. 421426, Oxford, England, 
August 2002  

[9] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner: 
Finding Copy-Paste and Related Bugs in Large-Scale Software Code. In 
IEEE Transactions on Software Engineering, Vol. 32(3): 176-192, March 
2006  

[10] John Johnson. Substring Matching for Clone Detection and Change 
Tracking. In Proceedings of the 10th International Conference on 
Software Maintenance, pp. 120-126, Victoria, British Columbia, Canada, 
September 1994  

[11] Fowler, Martin, and Kent Beck (1999), “Refactoring: improving the 
design of existing code, Addison-Wesley Professional. 

[12] Min H and Li Ping Z 2019 Proceedings of the 2019 3rd International 
Conference on Management Engineering, Software Engineering and 

Service Sciences - ICMSS 2019 (New York, New York, USA: ACM 
Press) pp 9–16 ISBN 9781450361897 URL 
http://dl.acm.org/citation.cfm?doid=3312662.3312707 

[13] Rachel Edita Roxas, “Automation generation of Plagiarism Detection 
among students Plagiarism”, In IEEE Transactions on Software 
Engineering, September 2006 

[14] Stefan Bellon, Rainer Koschke, Giuliano Antoniol, Jens Krinke, and 
Ettore Merlo.Comparison and Evaluation of Clone Detection Tools. In 
IEEE Transactions on Software Engineering, Vol. 33(9): 577-591, 
September 2007. 

[15] C.Kapser and M. Godfrey”Cloning Considered Harmful” Considered 
Harmfu”. In WCRE, pp. 19 -28, 2006. 

[16] Chanchal K. Roya, James R. Cordy, Rainer Koschke, “Comparison and 
evaluation of code clone detection techniques and tools: A qualitative 
approach,” Science of Computer programming, ELSEVIER, pp 470-495, 
2009. 

[17] Tung Thanh Nguyen, “Cleman X: Incremental Clone Detection Tool for 
evolving Software”, ICSE’09, May 16-24, 2009, Vancouver, Canada 
978-1-4244-3494-7/09@ 2009 IEEE. 

[18] Kodhai.E, Perumal.A, and Kanmani.S, “Clone Detection using Textual 
and Metric Analysis to figure out all Types of Clones”, Proceedings of 
the International Joint Journal Conference on Engineering and 
Technology, pp. 99-103, 2010. 

[19] Saif Ur Rehman, Kamran Khan, “An Efficient New Multi-Language 
Clone Detection Approach from Large Source Code,” International 
Conference on Systems, Man, and Cybernetics, IEEE, pp 937-940, 2012. 

[20] Rochella Elva,Gary T. Leavens, “A Semantic Clone Detection Tool for 
Java Code,” March 2012. 

[21] Deepak Sethi, Manisha Sehrawat, “Detection of code clones using 
Datasets,” IJARCSSE, pp 263-268, July 2012. 

[22] Tahira Khatoon, Priyansha Singh, Shikha Shukla, “Abstract Syntax Tree 
Based Clone Detection for Java Projects,” Journal of Engineering, IOSR, 
pp 45-47, Dec 2012. 

[23] Priyanka Bhatta, “HYBRID TECHNIQUE FOR SOFTWARE CODE 
CLONE DETECTION,” International Journal of Computers and 
Technology, pp 97-102, April 2012. 

[24] Rupinder Kaur, H. K, “Evaluation of Token Based Tools On The Basis 
Of Clone Metrics” International Journal of Advanced Research in 
Computer Science and Electronics Engineering, 2012. 

[25] Dhavleesh Rattan, Rajesh Bhatia, Maninder Singh, “Software Clone 
Detection: Systematic Review,” Information and Software Technology, 
ELSERVIER, pp 1165-1199, 2013. 

[26] Kanika Raheja, Rajkumar Tekchandani, “An Emerging Approach 
towards Code Clone Detection: Metric Based Approach on Byte Code,” 
IJARCSSE, Vol.3, May 2013. 

[27] Rupinder Kaur, Harpreet Kaur, “Clone Detection in Web Application 
using Clone Metrices” International Journal of Advanced Research in 

Computer Science and Software Engineering, July 2014. 

[28] Manpreet Kaur, Madan Lal, “Review on various code clone detection 
Techniques”, Computer Science and Software Department, Punjabi 
University, May 2015. 

[29] Shashank Prabhakar, Sonam Gupta “A review on Code Clone Detection 
and implementation”, Computer and Communication Engineering, 
February 2016. 

[30] Li L, Feng H, Zhuang W, Meng N and Ryder B 2017 Proceedings - 2017 
IEEE International Conference on Software Maintenance and Evolution, 
ICSME 2017 ISBN 9781538609927 

[31] Ghosh A and Kuttal S K 2018 2018 IEEE Symposium on Visual 
Languages and HumanCentric Computing (VL/HCC) (IEEE) pp 315–
317 ISBN 978-1-5386-4235-1 ISSN 19436106 URL 
https://ieeexplore.ieee.org/document/8506550/ 

[32] Alomari H W and Stephan M 2018 2018 IEEE 12th International 
Workshop on Software Clones (IWSC) (IEEE) pp 58–59 ISBN 978-1-
5386-6430-8 URL http://ieeexplore.ieee.org/document/8327320/ 

[33] Gabel M, Jiang L and Su Z 2008 Proceedings of the 13th international 
conference on Software engineering - ICSE ’08 (New York, New York, 
USA: ACM Press) p 321 ISBN 9781605580791 ISSN 02705257 URL 
http://portal.acm.org/citation.cfm?doid=1368088.1368132 

[34] Thaller H, Linsbauer L and Egyed A 2020 2020 IEEE 14th International 
Workshop on Software Clones (IWSC) (IEEE) pp 64–69 ISBN 978-1-
7281-6269-0 (Preprint 2001.07399) URL 
https://ieeexplore.ieee.org/document/9047635/ 

[35] Chanchal K. Roya, James R. Cordy, Rainer Koschke, “Comparison and 
evaluation of code clone detection techniques and tools: A qualitative 
approach,” Science of Computer programming, ELSEVIER, pp 470-495, 
2009. 

 

 

 

 

http://www.jetir.org/
http://dl.acm.org/citation.cfm?doid=3312662.3312707
https://ieeexplore.ieee.org/document/8506550/
http://ieeexplore.ieee.org/document/8327320/
http://portal.acm.org/citation.cfm?doid=1368088.1368132
https://ieeexplore.ieee.org/document/9047635/

